Area of Interest 1: Geomechanical Research

Development of Geomechanical Screening Tools to Identify Risk: An Experimental and Modeling Approach for Secure CO₂ Storage

DE-FE0023314

Dr. Mary F. Wheeler

The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Outline

......

Benefit to the Program

Goals and Objectives

Technical Status from Tasks 2 to 6

Accomplishments to Date

Synergy Opportunities

Benefit to the Program

Develop a Geomechanical Screening Tool to Identify Risk

Experimental & Modeling Approach for Secure CO₂ Storage

Project Overview: Goals and Objectives

Develop a screening tool for improved understanding of geomechanical effects associated with CO₂ injection

□ Derive a workflow from experimental and computational studies conducted for specific CO₂ sites, e.g. Frio, Cranfield

Task 1 Project management (M.F. Wheeler-lead)

Task 2 Conduct laboratory experiments for hydro-mechanical rock properties (N. Espinoza–lead)

Task 3 Upscale to bridge from laboratory to field scales (M.F.W.–lead)

Task 4 Extend simulator capability to model CO₂ storage field scale studies (M. Delshad–lead)

Task 5 Perform parameter estimation & uncertainty quantification (M.F.W.-lead, S. Srinivasan-consultant)

Task 6 Integrate results to generate geomechanical screening tool / workflow (M.F.W.-lead, S.S.-consultant)

Model Field Sites

Large Axisymmetric Triaxial Frame

ø 4 in

- 140 MPa (20 ksi) confining/pore pressure
- Ultrasonic monitoring
- Local strain measurement
- Strain/pressure control
- Temperature up to 150°C (300°F)
- Connected to CO₂ ISCO pumps

Rock Samples

Fluvial Oligocene, poorly consolidated Courtesy S. Hovorka (DE-AC26-98FT40417) Cretaceous, chlorite/quartz cemented BEG-UT Austin Core Research Center

Outcrop : Castlegate Sandstone

 Cretaceous Mesaverde group, cemented by calcite. This sandstone is attractive for testing because it can serve as an end-member due to weak cementing bonds presumably susceptible to CO₂ alteration. Available in several sizes from commercial vendors.

Planned Tests

Basic Rock Properties							
Dry conditions	Saturated with water						
 Mineralogy (XRF) Drained mechanical moduli Elastic nonlinearity Mechanical anisotropy Shear and tensile strength Fracture toughness Creep 	 Porosity Absolute permeability Biot's coefficient Thermal expansion coefficient Thermal conductivity Specific heat 						

Advanced Rock Properties							
Fluid flow properties with a CO ₂ phase	Mechanical						
Capillary pressure	Transition brittle to ductile						
Relative permeability	Strain localization						
Chemo-mechanical coupling	Scale effects						
Porosity change with chemical dissolution	Thermo-mechanical coupling						
Permeability change with chemical dissolution	Thermal induced stress						
Chemically enhanced creep	Poro-mechanical coupling						
Stress relaxation with chemical dissolution	Stress sensitivity of permeability						

Objectives		ectives	Upscale measured rock properties (for relevant to field processes (M.F. Who	luid flow & geomechanics) to scale eler-lead)
	•	Develop combinir approact	ment of homogenization schemes ng numerical and analytical hes, e.g. multiscale mortar method	$\int \frac{\sigma_{33}}{\sigma_{22}} = \frac{C}{\Xi} = -\alpha p_c I$
	•	Particula natural f localizati	ar emphasis will be put on including fractures in effective properties and ion effects	$\sigma_{11} \qquad $
		Obtain fi	eld scale constitutive parameters to	
L	•	perform geomec	coupled fluid flow and hanical numerical simulation	

• Task 3.0: Upscale to Bridge Laboratory to Field Scales

Simulator Development
• MFDFrac: developed using mimetic finite
differences
Sample fracture realizations from
parameterized space
Generate unstructured polyhedral
meshes based on fracture geometries
Internal Fracture Boundaries Intersecting Flow

Homogenization for Upscaling: Methodology

Choice of Unit Cell Model

- Darcy's law for unit cell (mesoscale) and field (macroscale) problems
- Characteristic length scales: $L_{unit}/L_{reservoir}$ = $\epsilon \ll 1$
- Solve an auxiliary unit cell problem to obtain effective permeability
- Use different unit cell models in different domains (sands A, B, C, etc.) for characterizing reservoir heterogeneity

• Homogenization for Upscaling: Methodology

Choice of Unit Cell Model

- Auxiliary Unit Cell Problem $-\nabla \cdot \left[K(y) \left(\nabla w_j + \overrightarrow{\mathbf{e}_j} \right) \right] = 0$ in Y $w_i = 0$ on ∂Y
- Effective Permeability

$$K_{eff} = \frac{1}{|Y|} \int_{Y} K(y) \left[\nabla w_{i} + \overrightarrow{\mathbf{e}_{i}} \right] \cdot \left[\nabla w_{j} + \overrightarrow{\mathbf{e}_{j}} \right] dy$$

• Homogenization for Upscaling: Application to Frio Field, TX

• Homogenization for Upscaling: Application to Frio Field, TX

R	eservoir Characteristics	Permeability in C Sandstone
•	Sandstone reservoirs	
	 Periodic deposition due to flooding of 	5040
	river beds	1540
	✓ Shale layer marks the end of one	5060
	deposition cycle	- 1545
•	Idealize as a periodic porous medium	£ 5080
•	Identify meso-scale periodicity from well	ebth
	log data	5100
•	Characterize period	
	✓ High permeability & Low permeability	5120 - 1560
•	Solve local period problem to estimate	Permeability Grid-averaged permeability
	up-scaled field scale permeability	0 1000 2000 3000 4000 Permeability (md)

Task 4: Simulator Development

Task 4: Simulator Development

• Geomechanical Effects of CO₂ Injection with a Poro-plasticity Model

Fluid Flow	$\frac{\partial(\rho(\phi_0 + \alpha\varepsilon_v + \frac{1}{M}(p - p_0)))}{\partial t} + \nabla \cdot \left(\rho \frac{K}{\mu}(\nabla p - \rho g \nabla h)\right) - q = 0$						
Stress Equilibrium	$\nabla \cdot (\sigma'' + \sigma_o - \alpha(p - p_0)I) + f = 0$						
Hooke's law	$\sigma'' = D^e : (\varepsilon - \varepsilon^p)$	Druker-Prager Yield Surface					
Strain-Displacement Relation	$\varepsilon \; = \; \frac{1}{2} (\nabla u + \nabla^T u)$	σ_2					
Plastic Strain Evolution	$\begin{aligned} \dot{\varepsilon}^p &= \lambda \frac{\partial F(\sigma'')}{\partial \sigma''}, \text{at } Y(\sigma'') = 0\\ \dot{\varepsilon}^p &= 0, \text{at } Y(\sigma'') < 0 \end{aligned}$						
Yield and Flow Functions	$Y = q + \theta \sigma_m - \tau_0$ $F = q + \gamma \sigma_m - \tau_0$	σ_3 σ_1					

Task 4: Simulator Development

• Preliminary Poro-plasticity Results with Application to Cranfield, MS

Pore Pi	ressure	Vertical Displacement	Volumetric Plastic Strain				
			VPSTRAIN 5.551e.04 0.0012 0.0024 0.0024 2.656e.03				
Mechanical	Properties	Next Steps: Geometry and Heterogeneity					
Ε	375,581 psi	Our findings show that					
V	0.25	at normal CO ₂ pressure					
α	1.0	injection range rock	PORO 0.38 0.34				
1/ <i>M</i>	1e-6 / psi	formation may yield.					
$ au_0$	1,600 psi						
$oldsymbol{ heta}$	0.6						

Objectives		ectives	Update input parameters for numerical models, e.g. simulated responses match observations (M.F. Wheeler–lead, S. Srinivasan–consultant)						
-		Complex physics a	relationship between the multi- attributes is honored		70 60 50 40 30 8 8 	True Log BW-5 BW-1 20 40	(ky), Layer 1		
		Residual migratior	uncertainty in predicting future of the CO2 is faithfully represented		70 60 50 40 30 800-3 20 10	True Log(Bŵ-5	(ky), Layer 2 BW-6 10 5 0 5 0 BW-2 -5		

• Process of History Matching: Combination of Tasks 2 to 5

History Matching Coupled w/ Level-Set, MFDFrac, and EnKF

• Matching Results: Water Saturation for Initial & Final Realizations

Matching Results: Observed and Predicted Production Profiles

- Observed data from the reference field
- 100 realizations before updating
- 100 realizations after updating
- Average of 100 realizations

• Quarter Wellbore Model: Flow & Geomechanics Equation

Assumption

- Assume a linear, elastic, homogenous, and isotropic porous medium
- The reservoir is saturated with a slightly compressible viscous fluid
- Quasi-static Biot model to obtain mechanical displacements

Geomechanics Equations

Balance of Linear Momentum: $-\operatorname{div} \boldsymbol{\sigma}^{\operatorname{por}}(\boldsymbol{u}, p) = \boldsymbol{f} \quad \operatorname{in} \Omega \setminus C$ Cauchy Stress Tensor: $\boldsymbol{\sigma}^{\operatorname{por}}(\boldsymbol{u}, p) = \boldsymbol{\sigma}(\boldsymbol{u}) - \alpha \, p \, \boldsymbol{I}$ Effective Linear Elastic Stress Tensor: $\boldsymbol{\sigma}(\boldsymbol{u}) = \lambda(\nabla \cdot \boldsymbol{u})\boldsymbol{I} + 2 \, G \boldsymbol{\varepsilon}(\boldsymbol{u})$

- ullet I is the identity tensor , $oldsymbol{u}$ is the solid's displacement , p is the fluid pressure
- lpha>0 is the Biot coefficient , $\lambda>0$ and G>0 are the Lamé constants
- *f* is a body force (gravity loading term)

• Quarter Wellbore Model: Flow & Geomechanics Equation

Assumption

- Assume a linear, elastic, homogenous, and isotropic porous medium
- The reservoir is saturated with a slightly compressible viscous fluid
- Quasi-static Biot model to obtain mechanical displacements

Geomechanics Equations

$$\frac{\partial}{\partial t} \Big(\Big(\frac{1}{M} + c_f \varphi_0 \Big) p + \alpha \nabla \cdot \boldsymbol{u} \Big) + \nabla \cdot \boldsymbol{z} = \tilde{q} \text{ in } \Omega \setminus \mathbf{C},$$
$$\boldsymbol{z} = -\frac{1}{\mu_f} \boldsymbol{K} \Big(\nabla p - \rho_{f,r} g \nabla \eta \Big) \text{ in } \Omega \setminus \mathbf{C},$$

- ullet p and $oldsymbol{z}$ represents the pressure and flux unknowns
- $\mu_f > 0$ represents the constant fluid viscosity
- $\rho_{f,r} > 0$ is a constant reference density (relative to the reference pressure p_r)
- φ_0 is the initial porosity , $\alpha \Rightarrow$ (coupling term)
- M is the Biot constant , $ilde{q}=rac{q}{
 ho_{f,r}}$ where q is a mass source or sink term

• Quarter Wellbore Model: Iterative Algorithm using Multi-rate Time Step

• Quarter Wellbore Model: Accumulated Number of Mechanics

Simulation Time vs. Iterations

Figure: Multirate coupling with two flow finer time steps (q = 2), within one coarser mechanics time step results in 44.2% reduction \downarrow in total number of **mechanics** linear iterations. Multirate couplings (q = 4), (q = 8) results in 69.2%, 83.5% reduction \downarrow in total number of **mechanics** linear iterations respectively.

Accomplishments to Date

- Set up of experimental studies on homogenization in Tasks 2 and 3
- Site characterization initiated in Tasks 2, 3, and 4
- Preliminary results from the advanced flow and geomechanics model in Tasks 3, 4, 5, and 6

Synergy Opportunities

Assistance in Decision Making

 Assist in selection of suitable sites for safe CO₂ storage using generalized S/Ws based on a posteriori knowledge

Interdisciplinary Collaboration

 Enhance understanding of the effects of CO₂ migration on open and closed faults and fractures

Training & Education

Support training and education of students who will take part in an interdisciplinary work, e.g. IPARS tutorial

Contribution to Identifying Geological Risk for Secure CO₂ Storage!

Summary

Developing a generalized geomechanical screening tool Preliminary outcomes from interdisciplinary collaboration Homogenization / Poro-plasticity / Level-set / MFDFrac / Ensemble-based calibration / Multi-rate fixed stress split Achievement ahead of milestone

Acknowledgements

Thank you for your attention

Contact: mfw@ices.utexas.edu

Organization Chart

Project Director										
M.F. Wheeler										
<u>Task 1</u>	<u>Task 2</u>	<u>Task 3</u>	<u>Task 4</u>	<u>Task 5</u>	<u>Task 6</u>					
Management	Laboratory	Bridging	Modeling and	Uncertainty	Integrate					
	Program	between	Field Studies	Quantification	Results to					
		Laboratory and		and Parameter	Generate					
		Field Scales		Estimation	Geomechanical					
					Screening Tool					
					/ Workflow					
<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>					
M.F. Wheeler	N. Espinoza	M.F. Wheeler	M. Delshad	M.F. Wheeler	M.F. Wheeler					
<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>					
M. Delshad	M.F. Wheeler	S. Srinivasan	M.F. Wheeler	M. Delshad	M. Delshad					
S. Srinivasan	M. Delshad	N. Espinoza	N. Espinoza	M.F. Wheeler	S. Srinivasan					
N. Espinoza	¹ / ₂ Postdoc	¹ / ₂ Postdoc	¹ / ₂ Postdoc	1 Student	N. Espinoza					
	1 Student	1 Student	1 Student (Y 3) S. Srinivasan		Postdoc					
	(Y 1&2)			(Consultant)	Student					

Gantt Chart

Tack		Sep. 2014 - Aug. 2015			Sep. 2015 - Aug. 2016			Sep. 2016 - Aug. 2017					
	TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
T1	Management		А, В										
Т2	Laboratory Experiment			С	D		E		F	G			
Т3	Upscale from Lab. to Field								н		I		
Т4	Simulator Development				J				к	L		М	
T5	Uncertainty Quantification								N				0
Т6	Integrated Geo- Screening Tool												Ρ
	A to P : Milestones						Sche	dule			Acco	molist	nment

IPARS

Integrated Parallel Accurate Reservoir Simulator (IPARS)

- > Workhorse for multiphysics, parallel, field scale simulations
- Coupled geomechanics, flow, reactive transport and thermal models
- Fractured reservoirs: hydraulic and natural fracture treatment
- Advanced well models: horizontal and deviated wells

